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Abstract—We present results from study of timing properties and a 
report on the detection of twin quasi-periodic oscillation (QPO) of 
frequencies 0.203 Hz and 0.26 Hz in the transient NS-LMXBs 
4U1608-52 using RXTE/PCA observations. The observations used in 
the present work were carried out during the X-ray outbursts in 2003 
(March-April -September-October). However QPO were never 
detected during other outbursts of the pulsar, detected the first time 
in this pulsar in order of mHz. Pulse profiles of different energy 
ranges [2-60 keV] are also plotted in this paper for two different 
observations, one in which QPO is detected and other in which QPO 
is not detected. The results of our analysis of RXTE data during 
outburst of the pulsar are presented in the paper. 

1. INTRODUCTION 

A low mass X-ray binary (LMXB) is a binary star system 
comprising a neutron star (NS-LMXB) or a black hole (BH-
LMXB) with a late type companion star. NS-LMXBs are 
known to emit X-rays erratically and exhibit certain physical 
states by their emission behavior, which is complicated owing 
to the different natures of the sources [12]. Soft X-ray 
transients (SXTs) are a group of X-ray binary systems that 
occasionally exhibit bright outbursts in a soft X-ray band. 
They are mostly identified as a low-mass X-ray binary 
(LMXB) containing either a neutron-star (NS-LMXB) or a 
black hole (BH-LMXB) [9]. An NS-LMXB is generally 
accompanied by an old neutron star with a weak magnetic 
field. Thus, the behavior of an NS-LMXB is similar to that of 
a BH-LMXB in variability and state transitions; however, the 
existence of a rigid surface and an intrinsic magnetic field as 
well as smaller gravitational forces in NS-LMXB 
differentiates from BH-LMXBs. 

The power law photon energy spectra often observed in 
LMXB’s suggests that the dominant radioactive mechanism in 
these systems is Compton up-scattering of soft photons in a 
hot plasma [20], [14]. The temporal behavior of such models 
has been studied in a variety of circumstances, [24], [5], [4]. 
For QPO in particular, both the fractional amplitude vs. energy 
and the relative time lag vs. energy can be predicted based 
upon models where a hot, uniform plasma is illuminated by 
soft black body photons, accounting for the system’s response 

to variations in either the soft photons or the plasma,[24], [9] . 
The variability of the NS-LMXB intensities reveals both 
quasi-periodic oscillations (QPOs) of various periods in 
addition to erratic variation and coherent mills-second 
pulsations for some NS-LMXBs, [10] , [2] . However, the 
pulsation behavior differs from that of ordinary X-ray binary 
pulsars which are generally binary systems consisting of a 
younger neutron star and an early type star. 

Soon after the launch of the Rossi X-ray Timing Explorer 
(RXTE), rapid (300–1300 Hz), nearly periodic variability in 
the X-ray light curves of low mass X-ray binary systems 
(LMXB’s) was discovered [19], [14] .These oscillations, 
referred to as kilohertz QPO (quasi-periodic oscillations), have 
now been observed in over two dozen neutron star bearing 
LMXB’s (see van der Klis 2000 for a review). They are 
distinguished by high frequencies and high quality factors 
(Q=FWHM/frequency), and tend to be seen in pairs, with 
nearly constant frequency separation between the lower and 
higher frequency peaks (also called the lower and upper 
QPO). The high frequencies of kilohertz QPO are thought to 
tie them to phenomena taking place in the inner regions of 
accretion disks surrounding neutron stars. In the present work, 
we have investigated the timing properties of the transient NS-
LMXB 4U1608−52 from March 2003 to October 2003 using 
observations made with the RXTE and report the detection of 
QPO features detected during X-ray outbursts in 2003. The 
results obtained from the timing analysis of the RXTE/PCA 
observation are presented in this paper. We also present pulse 
profile for this source in this paper. The low mass X-ray 
binary 4U1608−52 was first observed in 1971 [21]. It is the 
same source as the Norma bursts, from which the first X-ray 
bursts were discovered [3] independent from the X-ray burst 
discovered by Grindlay etal. (1976) from 4U 1820−30. 
4U1608−52 is a soft X-ray transient, which shows outbursts at 
intervals varying between 100 days and several years [11]. 

4U1608−52 is famous transient NS-LMXBs, where Type I X-
ray bursts have also been detected in so 4U1608−52 [13]. The 
outbursts typically show a sharp rise and an exponential 
decay. 4U1608−52 sometimes occurs outbursts with a 
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symmetric evolution between the rise and the decay. The 
periodicity of the outbursts has been reported in 4U 1608−52. 
Neutron star spin period to be 1.61 ms . Its distance is 
estimated to be 3.6 kpc from observations of flux-saturated 
type-I X-ray bursts [13]. The behavior in the soft state of 
4U1608−52 is investigated in detail by Takahashi, Sakurai & 
Makishima Hasinger and Van der Klis (1989) classified 
4U1608−52 as an atoll source, based on the correlated X-ray 
spectral variability and less than 10 Hz noise in the X-ray 
intensity that is characteristic for this class of objects. There 
are several models to define QPOs. According to Beat 
Frequency Model (BFM), QPOs arise from the modulation of 
accretion flow onto a weakly magnetized, rapidly rotating 
neutron star. 

2. OBSERVATION AND DATA ANALYSIS 

The timing study of celestial X-ray sources was main 
objective. It made great contributions to our understanding of 
high energy astrophysics by means of its unrivaled timing 
resolution. Almost all the X-ray sources in the sky are variable 
i.e. their intensity changes with time. The intensity changes 
can be highly periodic, quasi periodic or sometimes totally 
aperiodic. Time scale of such variation ranges from few mile-
seconds to tens of year’s .The plot of the power of individual 
component as a function of frequency is known as Power 
Density spectrum. 

Data will be analyzed by using appropriate operating system 
software heasoft and different models. First the standard step 
for methodology to quantify variability is to compute the 
power spectrum that is the amplitude squared of the Fourier 
transform of the light curve. The power spectra is expected to 
give information about characteristic frequencies of the system 
which might show up either as spectral breaks or as near 
Gaussian peaks, i.e. Quasi-Periodic oscillations (QPO). 

A QPO is identified by performing a power spectrum of the 
time series of the X-rays. A periodic pulsation appears in the 
power spectrum as a peak of power at exactly one frequency 
or more than one frequency. The QPO phenomenon promises 
to help astronomers understand the innermost regions of 
accretion disks and the masses, radii and spin periods of white 
dwarfs, neutron stars and black holes. Data will be sampled by 
analyzing the ASM (All Sky Monitor) light curve. If this curve 
has outburst then it will appropriate for timing and spectral 
studies. In any outburst, accreting matter is very large so we 
can obtain a sharp peak in ASM light curve, which gives many 
physical parameters. Data will be collected by different 
satellites. These   satellites collect data from different sources, 
which are available at the NASA’s site. In our investigation 
we collect data by RXTE. 

ASM was sensitive in 1.5-12 keV energy range [17]. The 
PCA, which was consisting of five Xenon filled proportional 
counter detectors, was sensitive in 2-60 keV energy range. The 
effective area, energy resolution and time resolution of PCA at 
6 keV, 18 % at 6 keV and 1 s, respectively. A detailed 

description of the PCA instrument can be found in paper by 
Jahoda [6]. The third instrument, HEXTE was operating in 15-
250 keV energy range [17]. We used standard 1 mode data, 
which provided binned data with a time resolution of 0.125 s 
to calculate the light curve and pulse periods. Fig. 1 represents 
the full RXTE-ASM curve from the beginning of the RXTE 
mission in 1996 to 2012. 

 

Fig. 1: ASM one-day averaged light curve of the transient NS-
LMXB 4U 1608−52 from 1996 February 2 (MJD 50133) to 2012 

January 01 (MJD 55927). During entire observing period of 
RXTE many major outbursts were detected in the ASM light 
curve. RXTE/PCA observations during 2003 outburst were 

analyzed to investigate the QPO features in the pulsar. 

We used data from all the PCA observations for our timing 
analysis during the 2003 outbursts (as marked in Fig. 1). There 
were a total of 49 RXTE/PCA observations during 2003 
outburst.  Standard 1 mode data with a time resolution of 
0.125 s were used in the present analysis. Data reduction was 
carried out by using the software package FTOOLS whereas 
data analysis was done by using the Heasoft package (version 
6.11).  

 

Fig. 2: One day averaged RXTE/ASM light curve of the transient 
NS-LMXB 4U1608−52 during 2003 outburst. 
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models due to the evident is based on the QPOs frequency. 
The interaction between the magnetosphere and the inner 
accretion disk regions modulates the accretion rate at the 
QPOs frequency. In principle most of the gravitational energy 
released at the neutron star surface is available to generate the 
QPOs signal [8]. 

5. CONCLUSIONS 

In this paper, we have performed timing analysis using the 
RXTE observation of the star NS-LMXB 4U1608-52during 
the outbursts of 2003. 

Using Gaussian model to fit and analyze the PDS of X-ray 
pulsars and investigation, we have discovered twin QPOs 
between ~0.203 Hz & 0.26 Hz of centroid frequency are in 
excellent agreement with the predictions of the BFM. These 
results provide the first quantitative confirmation of the BFM 
and show that the model can work in the presence of an 
accretion disk interacting with a rotating neutron star 
magnetosphere. As the source show QPO of kHz frequencies 
but in our investigation we observe lower frequency QPO in 
order of mili Hz. Pulse profiles of different energy range are 
also plotted for this data. There is a significant deference 
between curves for observations in  which QPO is detected 
and in which QPO is not detect .The pulse curves are 
sinusoidal in higher energy range  for later and for former it is 
sinusoidal in lower energy range. 
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